Rank of divisors on tropical curves
نویسندگان
چکیده
We investigate, using purely combinatorial methods, structural and algorithmic properties of linear equivalence classes of divisors on tropical curves. In particular, an elementary proof of the RiemannRoch theorem for tropical curves, similar to the recent proof of the Riemann-Roch theorem for graphs by Baker and Norine, is presented. In addition, a conjecture of Baker asserting that the rank of a divisor D on a (non-metric) graph is equal to the rank of D on the corresponding metric graph is confirmed, and an algorithm for computing the rank of a divisor on a tropical curve is constructed.
منابع مشابه
Reduced Divisors and Embeddings of Tropical Curves
Given a divisor D on a tropical curve Γ, we show that reduced divisors define an integral affine map from the tropical curve to the complete linear system |D|. This is done by providing an explicit description of the behavior of reduced divisors under infinitesimal modifications of the base point. We consider the cases where the reduced-divisor map defines an embedding of the curve into the lin...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملTropical Independence Ii: the Maximal Rank Conjecture for Quadrics
Building on our earlier results on tropical independence and shapes of divisors in tropical linear series, we give a tropical proof of the maximal rank conjecture for quadrics. We also prove a tropical analogue of Max Noether’s theorem on quadrics containing a canonically embedded curve, and state a combinatorial conjecture about tropical independence on chains of loops that implies the maximal...
متن کاملTropical Curves
A tropical curve is a graph with specified edge lengths, some of which may be infinite. Various facts and attributes about algebraic curves have analogs for tropical curves. In this article, we focus on divisors and linear series, and prove the Riemann-Roch formula for divisors on tropical curves. We describe two ways in which algebraic curves may be transformed into tropical curves: by aboemas...
متن کاملIrreducible Cycles and Points in Special Position in Moduli Spaces for Tropical Curves
In the first part of this paper, we discuss the notion of irreducibility of cycles in the moduli spaces of n-marked rational tropical curves. We prove that Psiclasses and vital divisors are irreducible, and that locally irreducible divisors are also globally irreducible for n 6 6. In the second part of the paper, we show that the locus of point configurations in (R2)n in special position for co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013